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Abstract—Analytical solutions are presented for heat losses from 2 buried pipe. Two cases are considered. The
first one involves a mixed {(convective) boundary condition with a uniform heat transfer coefficient at the pipe
surface which would be the case for turbulent flow. A simple approximate expression, accurate within 2%, is
derived for the shape factor in this case. In the second case, a laminar flow with linear temperature variation
along the pipe axis is considered. The coupling of the heat transfer process inside and outside the pipe requires
simultaneous solution of the energy equations for these two regions. The complicated geometry is handled in
an elegant manner with the use of the bicylindrical coordinate system. The results include the temperature
distributions and the shape factor in each case.
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NOMENCLATURE

a, scale factor for the bicylindrical coor-
dinates {(nondimensional), sinh o, ;

A,» B,, numerical coefficients;

Bi, Biot number (hR)/k,;

D, location of the pipe axis beneath the surface
[m];

e, unit vector in the pipe axis (z) direction ;

g metric coefficient, equation (8);

k. heat transfer coefficient [Wm 2K '];

k, thermal conductivity [Wm™* K ™'];

K, a constfant, equation {23};

n N, integers;

Nu, Nusselt number, (hR)/k, ;

g, heat flow rate per unit length of the pipe;

r, radial coordinate, Fig. 1;

R, pipe radius[m}];

S, shape factor, equation {19);

T, temperature [K];

u, velocity [ms™'];

X, ¥ rectangular coordinates, Fig. 1;

, coordinate along the pipe axis.

Greek symbols

o, B bicylindrical coordinates, Fig. 1
0, temperature, equation (23) [K7];
K, thermal diffusivity [m?s™*].
Superscripts
* dimensional quantities;
7 average.
Subscripts
1, values inside the pipe;

2

. values outside the pipe;
bulk.

=

L. INTRODUCTION

IN RECENT years the problem of heat loss from a buried
pipeline has received considerable attention. This
problem arises, for example, in connection with oil
lines, powerplant steam and water distribution lines,
underground electrical powerline transmission, and in
certain types of heat exchangers,

Approximate and exact steady state heat loss calcu-
lations are available in the literature for pipes with
idealized boundary conditions such as isothermal
surfaces [ 1-4] or uniform heat flux surfaces [5]. The
approximate solutions are based on the superposition
of infinite line heat source and sink solutions [1-3].
The exact solutions are obtained by the use of the
bicylindrical coordinates [4, 5]. Some approximate
time-dependent solutions are given by loffe {6] and by
Martin and Sadhal {7].

All the above analyses refer to idealized scenarios
{pipes with isothermal surfaces or uniform heat flux
surfaces), which do not occur often in practice. The
purpose of this paper is to consider a somewhat more
realistic situation in which the thermal interaction
between the fluid flowing in the pipe and the solid
medium in which the pipe is buried s taken into
consideration. Two cases are treated. First {(section 3),
we assume a mixed {convective} boundary condition
with a uniform heat transfer coefficient at the pipe
surface. Such a model is quite realistic when the fluid in
the pipe is well mixed, as occurs in turbulent flow. In
the second case (section 4), we assume fully developed
laminar flow in the pipe. The temperature distri-
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butions inside and outside the pipe are calculated
simultaneously. For the sake of brevity, we shall refer
to these two cases as turbulent and laminar, re-
spectively. Finally, in section 5 we compare the laminar
and turbulent cases. The results include the tempera-
ture distribution inside (for the laminar case only) and
outside the pipe and the thermal resistance between
the fluid and the medium surfaces as a function of the
burial depth and the properties of the fluid and the
solid medium.

2. FORMULATION

Consider a pipe of radius R buried at depth D below
an isothermal {7 ) surface of a semi-infinite solid {Fig.
1). Fluid with bulk temperature T, is flowing in the
pipe.

In the first case, that of a turbulent flow in the pipe,
we have to solve the heat equation for the solid medium

ViT% =0 (1)
with boundary conditions
T% = T, at the medium surface
and

CT* )
—ky = =MT, — T%)

(1 *

at ’* =R (2}

-
where T, is the temperature distribution, k is the
thermal conductivity, h is the heat transfer coefficient,
and r*is the radial coordinate (Fig. 1). Indexes 1 and 2
refer to conditions inside and outside the pipe, re-
spectively. Asterisks denote dimensional variables
which will later be made nondimensional.

For the case of laminar flow, we solve, in addition to
equation (1), the energy equation for fully developed
forced convection in the pipe
(i)wwf = V2T% (3)
Ky

where
u =21 — (*/R) ]e, 4)

is the axial velocity in direction z, e, is the unit vector in

Fic. 1. The geometry of the problem and the bicylindrical
coordimate system,
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the z direction, «, is the thermal diffusivity of the fluid,
and 1 is the average velocity. We now have to satisfy at
the pipe surface the conditions

T =1T% (5)

and

oT¥ cT%

2
=k, — atr¥=R
2 Ak
or

1
('\ ¥

We introduce nondimensional variables by scaling the
length with R and the temperature with (T, — T,).
That is, we nondimensionalize the temperature as
follows:

T, =(Tf - To}(Ty — Tol

It is convenient to carry out the analyses by using the
bicylindrical coordinate system (g, 8, z) [3, 4]. This
coordinate system is sketched in Fig. 1 and has the
advantage that the boundary conditions are located
along the coordinates. The coordinates ¢ = Oand a =
a, represent the medium and the pipe surfaces,
respectively.

The ransformation into bicylindrical coordinates is
achieved by using the formula

o ranh ‘o + 1}9}
X 41y = gtan ( 5 ) 6)
O<a< v, —w<ff<nm
The Laplace operator takes the form
1 (12 (~2 )
e 5+ — 7
v (o ) (f‘xz p? M
where
gz, B) = a*(cosh a 4 cos Y2 (&)
The pipe surface {a,) is described by the circle
{12
{x — acoth xy)? + ¥y = g 9)

4 2
sinh® o,
where
a = sinh a; and acoth «y, = D/R.

3. TURBULENT FLOW

In this section we assume that the heat transfer
coefficient at the pipe surface is uniform. Such a
situation may arise when the fluid in the pipe is well
mixed as in turbulent flow. The equations (1} and (2),
when rewritten in bicylindrical coordinates, have the
form

o,

(‘327*2

—2_q, :
T W

(1(12

T, )
{cosh oy +cos [})—(;a- = Bia(l —T,)ato = a4 (b)g(10)
T,(0,.8)=0 (c)

. hR . .
where Bi = -— is the Biot number.
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Heat losses from a fluid flowing in a buried pipe

The solution to equation (10a} with boundary
condition (10c) is readily obtained in the form

T,=Aya+ Y A,sinhnxcosnp. (11)

n=1
The coefficients A, are to be established with the aid of
boundary condition (10b). The resulting relationship
is

{cosh oy + cos ) (AO + Z n A, cosh no, cos nﬁ’)
3 = i /

L

= aBz‘(] — Agtg — 3, A,sinh naccosnﬁ). (12)
=1 )

n

The factor (cosh #, + cos ) above causes some
trouble since we cannot equate the infinite series in
equation (12) on a term-by-term basis. However, we
can overcome this difficulty by using the trigonometric
identity

cos feosnf = Hcos(n + 1} + cos(n — 1)ff]

to obtain a set of linear algebraic equations

4 (14 aayBi ., _ 4aBi
¢ coshay / *77 7 cosha,

Ag + A{cosh? g + a Bisinh o) + 4, cosh 20y = 0

(%l)A,,~1 cosh(n — 1)a, + A,(ncosh n oy cosh o,

+ a Bi sinh no)
n+ 1
+ (?)A"“ cosh(n + 1oy, =0 forn > 2. (13)

This set of equations cannot be solved since any N
equations involve N + | unknowns. However, 4, is a
decreasing sequence and can be truncated at somen =
N. Should we set A, , = 0, the above equations (13)
can be solved in a closed form for any N.

An alternative method of solution is to supplement
the set of equations (13) with an additional equation.
This equation states that the amount of heat con-
ducted from a unit length of pipe surface

r[eT
*=ky(Ty — To) ( ("é;2’>dﬁ

= Ay 2k (Ty — To

(14)
is equal to the amount of heat lost by the fluid,
Q* =ha(T, — Ty)
n dﬁ
X 1 — Tylog, Y} —————. (15
|- s

By equating equations (14) and (15) we obtain the
supplementary equation
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A, (ao + i) + A, sinh nag{— 1)'e " = 1.
‘ Bi =
(16)

We can now truncate equations (13) for some n = N
and solve them simultaneously with equation (16).

Both procedures described above are easy to apply.
The equations are essentially tridiagonal, therefore no
matrix inversion is necessary. We apply a modified
version of the Gauss-Jordan elimination technique, in
which a special provision is added to diagonalize
equation (16). The second procedure described above
usually leads to a quicker convergence ; however, it is
more susceptible to round-off errors.

The number of terms needed to achieve a desired
accuracy is inversely proportional to a,. For example,
to achieve precision up to 3 significant digits, about 30
terms are needed for «, = 0.1 while 2 are sufficient for
oy = 2.

Next, we investigate the behavior of the solution for
large and small values of o,

For large values of a,, (a pipe buried deep below the
surface), we maintain only the first term in equation
(11). Consequently we obtain

Bia

~— 17
1 + Biag (an

TZ
For even larger values of o, and moderate values of Bi,
equation (17) is identical to the case of an isothermal
pipe.
For small values of o, an asymptotic solution for T
can be obtained in the form of a power series in &, The
two leading terms in such a series are

aBi %g )
— {18
cosh oy + cos f (18)

/

aBia (

~ cosh oy + cosf i

These asymptotic expressions may be used to calculate

the temperature field for small and large o, without

evaluating the coefficients 4, from equation {13). They
may be also used for yet another purpose.

Although the method of solution described above
leads to exact results it is not convenient for engineer-
ing purposes. One would rather have a closed form
approximate expression. By solving ¢2T/éu® = 0 with
the appropriate boundary conditions, we obtain the
following expression for the temperature field:

aBia
" coshag + cos f + aBix,

{19)

Itis easy to see that at the limits of large and small «,
expression (19) behaves like the asymptotic solutions
{17) and (18), respectively. Consequenily, we may
expect equation (19) to be a reasonable approximation
of the temperature field for all values of &,. To illustrate
that this is indeed the case, we show in Fig. 2 exact
(solid lines) and approximate (dashed lines) tempera-
ture profiles on the pipe surface for various burial
depths (x,) and for Bi = 1. The ordinate is the
temperature T,(x,. f). and the abscissa is the coor-



1624

dinate f. Clearly, the approximation {19) resembles
quite well the exact solution. The discrepancy between
the approximate and exact results is always smaller
than 15%.
Another matter of interest for engineering purposes
is the shape factor (S) which is defined by the ratio
Q*

(20)

" 2mky(T, — To)
where O* is the heat transfer per unit length of the pipe.
In accordance with equation {14), the exact value for §
is

S = A, @1

The corresponding value for large %, is found from
equation (17) to be
Bi
S~ — »l-ﬁ - (21a)
(g Bi + 1)
For small values of 2, S is obtained from equation (18)
as

S ~ Bi{l — Biogcothag),

and the approximation based on equation {19} is

T (1 + Bi*w} + 2Biaycothoy) 2 22)
As may have been expected, for large and small values
of o, equation (22), approaches the corresponding
asymptotic results. We also compare the exact equa-
tion (21), and approximate equation (22), values of S.
The agreement is excellent. The deviation between the
two results is always smaller than 2%, with the
approximate result (22) being always slightly below
the exact one, equation (21). This means that for any
practical purpose expression (22} can be used to
calculate the shape factor. This is a rather exciting
result since expression (22) is relatively simple and easy
to apply compared to the exact expression. Yova-
novich [8] has pointed out to us that expression (22) is

1~0 T T T T
Bi=1.0
0.8} -

0.6

0.4

0.2

FiG. 2. Temperature distribution on the pipe surface for

various burial depths and for Bi = 1. ay = 0.25,05,  and 2,

correspond te D/R = 1.031, 1.128, 1,543, and 3762,
respectively.
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F16. 3. The shape factor (S)is shown as a function of the Biot

number (Bi) for various burial depths 2, = 0.25, 0.5, and 1.

(D/R = 1.031, 1.128 and 3.762). The solid lines and the circles

represent the exact and approximate solutions respectively.

The dashed curve, the x and the + designate the ap-

proximate behavior for large «,, small Bi and large Bi
respectively.

actually a lower bound of (21). This matter is discussed
in the Appendix. Figure 3 shows the shape factor as
a function of the Biot number (Bi) for various burial
depths {a,). The abscissa is the Biot number, and the
ordinate is the actual shape factor divided by the shape
factor of an isothermal pipe {1/%,). The solid lines
represent the exact results from (21). The approximate
calculation (22) is presented by circles in Fig. 3. Since
the approximation (22)is so close to the exact solution,
the circles and the solid lines actually coincide. The
dashed line shows the approximation for large o,
equation (21a), evaluated for o, = 1. As %, increases,
the difference between equation (21a) and (22) de-
creases. For a, = 2, expression (21a) can be used with
an error smaller than 1%, For small values of Bi, §
behaves like Bi. This is shown in Fig. 3, using the
notation x. For large values of Bi, S behaves like

SETHRI)
e Bi Ao

and as Bi — 2, S — (1/a,). which is the shape factor
for an isothermal pipe. The behavior at large Bi values
is denoted by the symbol + in Fig. 3.

4. LAMINAR FLOW

In the previous section, we solved the heat transfer
problem for the case of a uniform heat transfer
coefficient on the pipe surface. One cannot assume,
however, such uniformity in the case of laminar flow.
In this case, the temperature profile is asymmetric with
respect to the pipe axis. Consequently, the heat transfer
coefficient is expected to have angular dependence. [t is
thus necessary to solve simultaneously for the tem-
perature distribution inside and outside the pipe.

The equations which must be solved are (1), (3) and
(5). In order to separate the variables in equation (3),
we assume that the temperatures, TT and T%, vary
linearly along the pipe axis. As a result we have
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23)

5

Kx,
?3:-(22 )z+8(a B

where Kk ,/2u = constant, and indexes 1 and 2 refer to
conditions nside and outside the pipe, respectively.
The equations (1), (3) and (5) have the form

V0, = — K[1 -~ (r/R)*], (24)
Vi, =0 (25}
with the boundary conditions
(0, By = (26
at the medium surface,
01{ogs B) = Dylatp, B, 27)
P f‘@(?m B -k, ‘mz(f‘()a B) (28)
oo (82
at the pipe surface (o), and
ifo, By < v as a— =, (29)

To obtain a solution for equation (24}, we first
obtain an axially symmetrical particular solution and
add to it a solution of the homogeneous equation V28,
= {. We therefore have

i i
31 = - K i:g (?’/JR)Z e Té(r;R)d'

+ Ay + 2 A,,e“"’cosnﬁ] (309)
nel
and
0,=—K {Bﬂa + Y B,sinh noccosnji’]. (31)
nw=t -

The boundary conditions (26) and (29}, are already
satisfied. Upon satisfving (27) and {28} we obtain

Lk, 3
Ag=— [~ tay += 32
° (4 PR 16> G2)
i = {—1)"sinh na,
o 2n[sinh noy + (k,/ky) cosh nay]’
n=12 .. (33)
Lo
Bo = — S ki/ky) (34)
and
5 (= 1yemo
" 2nfsinh nag + (ky/ks)cosh nag]’
n=12,.... {35

In order to obtain an expression for the shape factor,
we must calculate the fluid bulk temperature, 0,
This is given by

0 (= By [1 = (/Ry} d4

[y

2
b= (36)

where the double integration is carried out over the
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cross-sectional area of the pipe. By the representation
of {(r/R) in the («, §) coordinates we find that

11 1 v
o= Kgg + gk = 3 J f
o smh3 ag sinh (o — o) cos dud
x Aye [ (cosh & + cos B)? adp.
(37

After tedious evaluation of the above double integral,
we obtain

¥ Aae“z”""}. (38)

=1

11
by, = K{ % + 4&15’;{2}&(}
The heat flow per unit length of the pipe is given by an

expression comparable to equation (14). The shape
factor [defined in equation (19)] is

s_[ (k/k)+o:0+2z

k. Tk - 2nas -1
« ( 2»‘kl)e ) (39)
nfcoth nay + (ky/k,)]

The first term in equation {39) is identical to the
classical result for a pipe with uniform heat flux at its
surface [ 2]. The second term is identical to the thermal
resistance for an isothermal buried pipe, and the third
one can be viewed as a correction term whose magni-
tude decreases with increasing «,,.

5. DISCUSSION

In this section we compare calculations obtained by
using the two models presented in the previous
sections. Since the description of the laminar tempera-
ture field inside the pipe will assist us in better
understanding the similarities and the differences
between the two models, we start by introducing the
vertical temperature profile inside the pipe for various
burial depths (D/R) and various thermal conductivity
ratios (k,/k,) These temperature distributions are
shown in Figs. 4 and 5 respectively. The abscissa is the
normalized temperature 0,/60,, and the ordinate is the
radial location with respect to the pipe center. These
temperature profiles correspond to the laminar case,
and their asymmetric structure is apparent. The maxi-
mum temperature always occurs below the center-
line of the pipe; but as the burial depth increases, the
location of the maximum temperature migrates to-
wards the pipe center {Fig. 4). Consequently, the
temperature af the bottom of the pipe decreases with
increasing burial depth. The dependence of the tem-
perature profile on the thermal conductivity ratio
ky/k, is shown in Fig. 5. We note that for high k,/k,
ratios, the relatively high thermal conductivity of the
medium tends to equalize the temperature distribution
on the pipe surface and forces the temperature profile
inside the pipe to be almost symmetric. Hence, the
location of the temperature apex migrates towards the
pipe center with increasing k,/k,. For low k,/k, ratios,
the relatively high conductivity of the fluid tends to
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02 04 08 08 10 12 14

Fii. 4. The normalized temperature profile (8/8,} in the pipe

is shown for various burial depths o, = 0.25,0.5,and 1. {(D/R

= 1031, 1.128 and 1.543} The medium-fluid thermal
conductivity ratio is k,/k; = 1,

flatten the temperature profile and to decrease the
asymmetry.

Note that the physical properties in the laminar and
turbulent models are described by the fluid thermal
conductivity ratio {k,/k ) and by the Biot (B7) number,
respectively. To facilitate comparison we assign for hin
the latter case the classical value

kR 24
Nig=-—=—,
ky 11
which is the Nusselt number for pipe flow with uniform
heat flux at the surface [2]. Using this value, we obtain

1,=6,/8,
s e
X
R
0
-10 i
O 02 04 06 08 10 12 V& 16

Fic. 5. The normalized temperature profile (8,/0,} in a pipe
buried at depth «, = 0.5{B/R = 1.128}is shown for various
medium-fluid thermal conductivity ratios k,/k; = 0.1, 1, 10,

Haim H. Bau and 8, S. SapHAL

a relationship between the two parameters, (Bi) and
{ky/k ), in the form

hR 24k,

==
ky 1k,

40)
Hence, when comparing the two cases we shall use the
corresponding values satisfying the above relationship.

The temperature distribution around the pipe sur-
face is shown in Figs. 6 and 7 respectively as a function
of the burial depth and the thermal conductivity ratio
(ko/k,). The ordinate is the normalized temperature
6/8,, and the abscissa is . The dashed and solid lines
represent the turbulent and the laminar models re-
spectively. The qualitative behavior in both cases is
similar. Since in the turbulent model there are tem-
perature extrema in the pipe, the peak temperature at
the pipe bottom tends to be lower than in the case of
the laminar model. A marked difference between these
two models is that the ratio 6/0, at the pipe bottom
rises with increasing burial depth for the turbulent
mode! while it declines for the laminar one (Fig. 6). The
dependence of the temperature profile on the thermal
conductivity ratio (k,/k,)is shown in Fig. 7. The results
for the laminar and turbulent cases almost coincide for
high k,/k ratios. This may have been expected since
the relatively high thermal conductivity of the fluid
tends to equalize the temperature inside the pipe
{Fig. 5).

Finally, in Fig. 8 we present the shape factor (S)as a
function of the burial depth (a,) for various values of
k,/k, (or Bi). The dashed and solid lines represent the
turbulent and laminar cases respectively. The ordinate
is the ratio of the actual shape factor S normalized by
the shape factor of an isothermal pipe {1/%,). The
abscissa is the burial depth, shown in terms of x, and
D/R at the bottom and top respectively. The general
characteristics of Fig, 8 are in agreement with the
previous figures. For high values of k,/k,. the laminar
model approaches symmetry and the heat transfer
coefficient on the pipe surface is almost uniform thus
the results of both models coincide. For low values of
k,/k, and for large values of «,, we expect to approach
a situation of an isothermal pipe and again both

Fici 6. The temperature distribution around the pipe surface

is shown for pipes buried at various depths &, = 0.25,05 and

1.{D/R = 1.031, 1128 und 1.543}. The medium-fluid thermal

conductivity ratio is k,/k, = 1, and the corresponding Biot

number is Bi = 2.18. The dashed and solid lines correspond
to the turbulent and laminar cases, respectively.
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1R i i T T T T T
ko/ky=01  Biz218

kafky=10  Bi=0.218
0y L

0 B ‘ n

FiG. 7. The temperature distribution around the pipe surface

for a pipe burial at depth o, = 0.5 (D/R = 1.120}is shown for

various medium-fluid thermal conductivity ratios. The

dashed and solid lines correspond to the turbulent and
laminar cases respectively.

D/R

10 111213 15
10 T 1 z

20 25 35

09

0.8

0.3}

02

0.1

ky/k,=1000  Bi=00218

i L 1 L L

0 2.0
oo

FiG. 8. The shape factor is shown as a function of the burial

depth (a,} for various fluid-medium thermal conductivity

ratios. The dashed and solid lines correspond to the turbulent
and laminar cases respectively.

models give similar results. It is interesting to note that
the deviation between the two models is always smaller
than 10%,. Consequently, the simple expression (22)
can be used even for the laminar-asymmetric case with
relatively small error.

6. CONCLUSION

We have derived expressions for the temperature
distribution and the shape factor for wurbulent and
laminar flow in a buried pipe. In the former case, we
assume a uniform heat transfer coefficient at the pipe
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surface, and we find that the expression for the shape
factor

Bi
S =
(1 + Bi* a2 + 2 Bi ap coth ay)' 2

isaccurate within 2%, In the laminar case, although the
temperature profile in the pipe is asymmetric, the
above expression provides results which are accurate
within 10%.
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APPENDIX

The purpose of this Appendix is to show that the approxi-
mate shape factor, equation (22), is a lower bound of the
exact shape factor, equation (21).

Yovanovich {8] suggests a method of obtaining a lower and
upper bound for the shape factor (S). The lower bound is
obtained by considering a flux tube bounded by two constant
i surfaces (Fig. 1), say, f and § + df. In effect, the surfaces §
and f + dp can be viewed as insulated partitions. Con-
sequently, no heat flow is allowed along constant « lines. The
thermal resistance of such a section will be the sum of the film
resistance inside the pipe and the conductive resistance inside
the flux tube. The shape factor can be written as the inverse of
the resistance

1 1
S= —
2k, {’IR[Q(%, p1'*dp

-1
---- —_— 1
o kailgte, 5)]1 2 dﬂ} A

Integration over f§ yields the lower bound for the shape factor

sl
S,=2 ’ ds. (A2)
im0
The expression we obtain here is identical to our approxi-
mate shape factor, equation (22). This however, should not
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Table Al. Comparison between the exact shape factor (S}, the approximate shape factor (5,) and the upper bound (S,)

Bi = 0.1 Bi=1 Bi =10 Bi = 100.0
% DR S s S, s, s s, S, S S, S, S s,
01  1.005 00913 00919 00990 0576 0585 0909 2129 2137 50 5757 5760 9.091
02 1020 00912 00918 00980 0571 0580 0833 1989 1997 3333 4070 4071 4762
03 1045 00910 00917 00971 0563 0572 0769 1808 1814 25 3006 3006 3226
05  1I28 00906 00912 00952 0541 0549 0667 1449 1452 1667 1918 1918 1961
1.0 1543 00886 00892 00909 0465 0470 05 0886 0887 0909 0987 0987 0990
20 3762 00826 00831 00833 0331 0331 0333 0475 0475 0476 0497 0497 0498

be surprising since the expression (22} has been calculated by

= 0. In this equation we

b a2
o

using the i-dim. equation

implicitly do not allow heat flow along constant « lines.
Hence, our 1-dim. approximation is comparable to the flux
tube model, and our approximate shape factor, equation (22),
is a lower bound.

Yovanovich [8] also suggests a method of constructing an
upper bound to the shape factor. On the assumption that the
pipe is isothermal, we obtain the upper bound for the shape
factor (§,)

Bi
S,

-2 A3
"1+ Biag A3

This is identical to our approximate shape factor for large 2,
[equation (21a)].

It is interesting to check how close these upper and lower
bounds are to the exact solution. We exhibit this information
in Table Al where we present the exact shape factor and the
upper and lower bounds for various values of a4, and the Biot
number.

As is evident from the table, the difference between the
upper and lower bounds decreases for large values of %, small
values of Bi and large values of Bi. However, in the range of

moderate Biot numbers and small a,, there is a fairly large
gap between the lower and upper bounds. We note also that
the exact value is remarkably close to the lower bound. The
maximum deviation is well below 2%,

Itisdifficult to provide arigorous explanation as 1o why the
lower bound is so close to the exact solution, We note,
however, that the temperature distribution associated with
the lower bound (19) satisfies the differential equation (1) in
an average sense and it also satisfies the boundary condition
at the pipe wall, while the temperature distribution associated
with the upper bound does not satisfy the same boundary
condition. Consequently, the surface temperature associated
with the lower bound resembles very closely the exact one asis
evident from Fig 2. On the other hand, the surface tempera-
ture associated with the upper bound differs significantly
from the exact one. For example, the isothermal surface
temperature for o, = 0.25 and B = 1 is 0.20. We see that this
isotherm (Fig. 2) is much above the exact temperature in the
upper section of the pipe. For this reason, the shape factor
associated with this isothermal temperature is well above the
exact value. On the other hand, the temperature distribution
associated with the lower bound is only slightly below the
exact temperature distribution in the same region. Con-
sequently, the lower bound is very close to the exact shape
factor.

PERTES DE CHALEUR A PARTIR D'UN FLUIDE EN ECOULEMENT DANS UN TUYAU
ENTERRE

Résumeé-—On présente des solutions analytiques pour les pertes de chaleur a partir d’un tuyau enterré. On
considére deux cas. Le premier suppose une condition aux limites mixte {convective) avec un coefficient de
transfert thermique uniforme 4 la surface du tube, ce qui est le cas de 'écoulement turbulent. Une expression
simple approchée, précise 4 2%, prés est obtenue pour le facteur de forme dans ce cas. Dans le second cas, on
consideére un écoulement laminaire avec une variation laminaire le long de 'axe du tube. Le couplage du
transfert thermique a Uintérieur et 4 'extérieur du tube demande la résolution simultanée des equations de
I'énergie pour ces deux régions. La géométrie compliquée est prise en compte dune fagon élégante par
'utilisation du systéme bicylindrigue de coordonnées. Les résultats concernent les distributions de
temperature et le facteur de forme dans chaque cas,

WARMEVERLUSTE EINES DURCH EIN EINGEGRABENES ROHR STROMENDEN FLUIDS

Zusammenfassung-—Es werden analytische Lésungen fiir die Wiirmeverluste eines eingegrabenen Rohres
angegeben. Zwei Falle werden betrachtet : Der erste Fall enthilt eine gemischie (konvektive) Randbedingung
mit einem gleichférmigen Wirmeiibergangskoeffizienten an der Rohroberfliche, was fiir turbulente
Strémung zutrifft. Ein einfacher Niherungsausdruck fiir den Formfaktor dieses Falles wird mit einem
groBten Fehler von kleiner 2% hergeleitet. Im zweiten Fall wird eine laminare Strémung mit linearer
Temperaturdnderung entlag der Rohrachse betrachtet. Der gekoppelte Wirmetibertragungsproze
innerhalb und auBerhalb des Rohres efordert die simultane Ldsung der Energiegleichungen fiir diese beiden
Gebiete. Die komplizierte Geometrie wird in eleganter Weise mit einem bizylindrischen K oordinatensystem
behandelt. Die Ergebnisse enthalten die Temperaturverteilung und den Formfaktor fiir jeden Fall.



Heat losses from a fluid flowing in a buried pipe

NMOTEPH TENJA XWAKOCTbIO ITPU TEUEHUHU B 3ATIYBJAEHHON TPYBE

Aunoramms—IIpencrasneHbl aHANHTHYESCKHE PEIICHUA LI ONpPEAEieHHA NOTEPL Temia 3arnybnenno
Tpybo#. PaccMoTpeHst aBa cnydasn. B nepsom ucnonesyercs cMewaHHoe (KOHBEKTUBHOE) IpaHHYHOE
YC/I0BHE C OAHOPOJHBIM KO3POHIHEHTOM MEpeHoca Tenja Ha MOBEPXHOCTH TPYOBI, KOTOPBIA HMEET
Mecto npd TypOynentHom TeuewHH. [ns dopMm-pakTopa BBIBEACHO [POCTOE NPHOIHXEHHOE
BBIPAXEHHE, Jaollee NOrpelHocTh B npeaenax 2 %,. Bo Bropom cnyyae paccMaTpeBaercs aMHHapHOe
TEYCHHE C JIMHEHHBIM H3MEHEHHEM TeMNEpaTypbl 1o ocu TpyObl. Biaumoneiicteue npoueccos
TEIJIONePEHOCca BHYTPH H CHAPYXH TpyObl TpeOyer OJIHOBPEMEHHOrO PEINCHHA YPABHEHMH IHEPIUM
Ut 3THX JBYX obaacTed. [as paccMOTPEHHS CIOKHOM reOMETPHH NPHMEHAETCS M3AIIHBIN METOA C
HCNIONB30BAHUEM CHHUNTHHIPHYECKOH CHCTEMBI KOOPAHHAT. [ToNydeHb! Py IbTaTh IO PACcHpe ACNEHUIO
Temnepatyp # opM-paxkTopaM AJig KaXAOTo Chyyas.
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